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Abstract: Fractal approach is successfully implemented in many applications within 2D 
signal processing. Fractal synthetical concept is applied for image compression with 
high compression ratios while fractal and multifractal descriptors provide classification 
of textural images with high occuracy. Various multifractal models are presented in 
literature. This paper summarizes them and illustrates new multifractal techniques 
applied for image classification and image denoising. 
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1. Introduction 
 

Fractal model arose in 1960s for analysis of variables from econometrics in 
papers of Benoit Mandelbrot [1]. From the beginning fractal model presented a great 
potential in modeling nonlinear processes. However, fractality can be traced almost 
hundred years before, in papers of mathematicians who investigated non-differentiable 
functions. Non-differentiable functions, as it turned out, were seen as functions with non-
integer derivative orders. This led to geometrical analysis of nowhere differentiable 
functions and generalization of their dimension to non-integer values. Therefore, 
functions (or more generally – sets) with non-integer dimensions are called fractals. 
Fractal dimensions are in general defined through measures and definition of a measure 
determines the type of a dimension. Namely, this leads to fact that two different fractal 
measures give different dimension values for the same object (signal). Thus, construction 
of the new fractal measures should provide characterization of particular features within 
the signal where each measure (and respecting dimension) should describe a specific 
quality of the signal. 

In the light of dimensionality there can be seen multifractality introduced later 
by the same author for description of fractals with non-uniform dimensions. In other 
words, multifractal is a union of fractals with various dimension values. This notion 
opened a place for a new term – monofractality, which considers fractals with uniform 
dimensionality. 

Description of multifractality is more difficult task than description of 
monofractality. It is needed to locate pixels with the same dimension value; this is done 
using local multifractal measure that gives local dimension or Hölder exponent. Pixels 
with the same dimension within the signal form the monofractal subset and the so-called 
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global dimension is calculated for each monofractal subset. Global dimensions 
dependence of corresponding local dimensions is called multifractal spectrum or 
singularity spectrum [2]. The shape of the curve representing this dependence is concave 
and smooth with self-similar measures. In general, multifractal spectrum is not smooth 
and variations of spectrum reveal some characteristics of the signal. Local dimension 
matrices illustrate local behavior of the signal or the trend of the signal in the pixel’s 
neighborhood. Global dimensions demonstrate a global trend of the whole regions within 
the signal. Therefore, complete mapping from local to global dimension embodied in 
multifractal spectrum gives a ‘signature’ of a signal. However, the multifractal signature 
is not unique feature of the signal and there are other parameters defined that supplement 
spectrum. 

Its greatest development multifractality achieved in physics for description of 
turbulent flows and sensitivity of the system to initial conditions [3][4]. That is the point 
where the fractal model came into contact to the chaos theory. This is the reason why 
interpretations of many fractal parameters, like Legendre multifractal spectrum or 
partition function, came from physics (thermodynamics). In 1980s fractal model was 
implemented for 1D and 2D signal processing. Fractal techniques from that period are 
still dominant in signal processing. Those techniques are based on geometrical 
interpretation of an image where the image is defined as a geometrical surface or volume. 
This implicitly leads to definition of the pixel intensity as a (third) spatial coordinate that 
is not a common notion in signal processing community. Multifractal techniques that 
consider pixel intensity as a function defined over spatial coordinates originate from 
1990s. Although these two approaches are based on different models of the image, they 
are both still in use. These two approaches will be further explained in the next section. 

Fractal model is applied in many areas of image processing. One of the most 
successful applications of the fractal model is in classification and segmentation of 
images [5], [6]. There are many algorithms of this model in medical image processing 
such as: radiograph images [7], mammograms, cytological images [8], forensics [9]. All 
listed applications rely on analytical fractal approach: the signal is assumed fractal or 
multifractal and parameters of fractal model are derived without information of the image 
formation. Image generation as a non-differentiable (fractal) function of two variables is 
involved in image compression where fractal model achieved outstanding results [10].    

The focus of this paper is a presentation of novel fractal techniques for image 
classification, segmentation and adaptive denoising. The paper is organized as follows. 
The section 2 describes fractal descriptors from literature. The most of fractal techniques 
are divided into two classes depending on image perception; image can be modeled either 
as a geometrical object (surface, volume) or as a function of two (spatial) variables. 
Section 3 introduces fractal methods for image classification and segmentation. Proposed 
methods represent generalization of blanket method from the literature [11]. Blanket 
method is a monofractal technique while its multifractal adaptation is recommended in 
the geometrical and non-geometrical sense. Multifractal spectra are used as descriptors of 
images and pixels in the scope of classification. Section 4 illustrates fractal model 
application for adaptive image filtering. Local dimension matrices obtained by two 
multifractal measures are used as masks for low-pass filters from the literature. The 
requirements of the desired filter are the elimination of high-frequency noise and 
preservation of edges and textural regions. Section 5 gives conclusions of presented 
multifractal methods and directs to their improvements in the future. 
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2. Multifractal descriptors 
 

The most frequently used multifractal (MF) features are fractal dimension and 
multifractal spectrum (MFS). Calculation of fractal dimension implies monofractal 
(unidimensional) model of the image, while multifractal spectrum implies multifractal 
modeling of the image. Apart from the classification of fractal methods on monofractal 
and multifractal ones, they can be categorized with respect to applied model of the image. 
Commonly used model of an image assumes pixel intensity as a function over two spatial 
coordinates. This model corresponds to a physical formation of an image and is 
considered as non-geometrical. Fractal dimension (or MFS) calculated under this model 
is, actually, a dimension of a function which defines pixel intensity mapping over spatial 
coordinates. The other image model most often used in fractal image processing 
interprets pixel intensity as a third spatial component. Therefore an image is represented 
by the surface embedded in a 3D space. The calculated fractal dimension is indeed a 
dimension of a geometrical surface defined by the image and this model is further 
considered as a geometrical model. This model is not based on the principles of physical 
formation of an image. 

Geometrical methods are based on calculation of area or volume of the image 
surface. The only difference among those techniques is the procedure of calculating area 
and volume. Techniques from literature with geometrical modeling of the image are 
further summarized: 

- Differential box-counting (DBC) method [12] is a modification of traditional 
box-counting method. This method implies covering of the image with 3D 
boxes, where pixel intensities are interpreted as a third spatial coordinate. The 
number of pixels included within the boxes at each scale is the measure.  DBC 
method is one of the most frequently used techniques since of its simplicity. It is 
used for segmentation of images [13], classification of images [14], and as a 
descriptor of medical images [15]. There are many modifications of this method 
in the literature. 

- Blanket method [11] proposes construction of upper and lower blankets based on 
minimum and maximum operators. The upper and lower blankets enclose the 
image surface and define its volume. The area of the image surface is then 
calculated as a ratio of volume and thickness of the volume. The process of 
calculation of blankets is iterative. Blanket method is successively implemented 
in segmentation of images [16], [17], as a feature vector in mammography [18], 
and in forensics [9]. 

- Triangular prism surface area method [19] interprets image surface as a 
superposition of triangular prisms surfaces over the uniform boxes. Triangular 
prism method is used for the analysis of satellite images [20]. 

- Method based on mathematical morphology [21], derives the area of the image 
surface indirectly over the volume as with the blanket method. Volume is 
defined by the image surface (from the bottom) and the dilated replica of the 
image (from the top). Area of the image surface is obtained by dividing the 
volume of the image by its thickness. 
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- Variation method [22] determines image dimension using volume, not the 
surface, as a fractal measure. The thickness of the volume for each pixel in the 
image is determined as a maximum difference between pixel intensities in the 
neighborhood defined by the scale. 
 
Non-geometrical methods from the literature are diverse regarding interpretation 
of measure, although all of them interpret pixel intensity as a measure of a single 
pixel. They are further summarized: 

- Myopic capacities [23] calculate local multifractal measure over pixels 
intensities within the scaled neighborhood. There are many different measures 
from this group and all of them interpret pixel intensity as a local measure of a 
single pixel. Myopic capacities are used for frame change detection [24], image 
segmentation [7], detection of objects in the infrared images [25]. 

- Difference-based capacities [26] are based on myopic capacities. They are based 
on difference of pixel intensities within the scaled neighborhood of each pixel.  

- Spatial derivative-based capacities [27] involve spatial derivatives (gradient, 
Laplacian) into determination of local multifractal measures. Spatial derivatives 
are employed in interaction with Gaussian as with the edge detectors. 

- Implementation of integral transformations [28] is frequently used approach for 
calculation of Hölder exponents. Fourier Transform (FT) or, more often, 
Wavelet Transform (WT) is used. In applications of WT the local dimensions 
(Hölder exponents) are calculated using vanishing moments property of specific 
wavelets. WT is applied in image denoising applications [29] and for detection 
of microcalcifications and masses in the mammograms [30], [31]. 

- Fractional Brownian motion (fBm) [2] regards a signal as a process with the 
variance that depends on time in a power-low manner. The calculation of local 
dimensions is accomplished using FT. FT implementation in MFA assumes 
calculation of power spectral density. Modeling images with fBm is one of the 
oldest techniques and it has been used in: textural image synthesis [32], 
classification and segmentation of images [33], and medical image analysis [34], 
[35]. 

 
3. Image classification using MF descriptors 

 
Classification of textural images represents an issue to traditional classification 

techniques using features such as histograms. Multifractal spectrum represents one of the 
features that overcome this issue. In [36], [37] three multifractal methods based on 
blanket method are introduced. Blanket method is generalized for multifractal case. All 
three methods are designed in a way that overcomes the iterative construction of the 
multifractal measure. Thus, in order to calculate local dimensions on desired scale, all the 
smaller scales are not considered. Calculation of the local dimensions in Method 1 is a 
direct generalization of the original method according to multifractal techniques with 
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geometric approach. Upper and lower blankets are calculated in a manner where the pixel 
intensity is treated as a third spatial coordinate. Global dimensions are calculated using 
box-counting method. Final MFS obtained using this method is shown in Figure 1.a. 

Method 2 brings non-geometrical approach where the upper and lower blankets 
are constructed without the (spatial) scale information. The monotony of those blankets is 
achieved with constant parameters for each blanket and they are mutually independent. 
Discrimination capacity of MFS provided by Method 2 is not influenced significantly by 
the choice of constant parameters. Spectra are only slightly shifted to the left and more 
narrow as the parameters increase. Global dimensions are calculated using box-counting 
method and the MFSs for three textures are shown in Figure 1.b.  

Local dimensions in Method 3 are calculated using multifractal measure 
provided in Method 1. Thus, Method 3 can be seen as a geometrical method for 
calculation of local fractal dimensions. Global dimensions are calculated using original 
(monofractal) blanket method in such a way that global dimensions of each monofractal 
subset within the image are calculated using original blanket method. Here, embedded 
dimension is three and it is also the maximum global dimension. Figure 1.c. illustrates 
MFSs for three textures. In comparison to Figure 1.a. and Figure 1.b. it is obvious that 
maximum global dimensions in Methods 1 and 2 are 2. This is the consequence of gauge 
used in Method 3 which is of dimension 3. 

 

In all three methods local dimensions are calculated using the lowest scales, as it 
is confirmed in conducted experiments where resulting MFSs are the most discriminative 
for the smallest scales. Scales considered in calculation of global dimensions are taken 
from the wide range – from the smallest to the largest (maximum scale is the half of the 
image size in pixels). Omission of the smallest scales leads to rounding shapes of MFS 
which are not discriminative anymore. 

Classification results obtained by all three proposed methods exceed results 
obtained by the original method. Experiments are conducted on Brodatz database 
consisted of 110 textures of size 640x640 pixels. Each image from the database is divided 

a) b) c) 

Figure 1 Illustration of MFS for three textures obtained by: a) Method 1, b) Method 2,
and c) Method 3. 
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into 25 images, thus each class contains 25 textures. Classification of textures from the 
database is executed using k-means algorithm. Classification is repeated for 400 times 
since k-means algorithm is sensitive to the initial conditions. Percentage of correctly 
classified textures using original method is 84.53%. Proposed multifractal methods give 
classification rates of: 93.78%, 92.42%, and 88.50%, respectively. Explanation of 
improved classification performances of the proposed methods is found in the size of 
descriptors used in the classification: original blanket method provides a single value 
(fractal dimension) as a descriptor, while multifractal methods give feature vectors of 
variable size. All the four experiments are carried under the same conditions. Further, 
average computation times are comparable for Methods 1 and 2, while Method 3 requires 
much higher computation time. This is due to iterative calculation of global dimensions 
in Method 3. 

Classification of textural images can be exploited for the image segmentation. 
For that purpose MFS is used as a descriptor of each pixel. In other words, the MFS is 
calculated on a sliding window of a fixed size. Obtained spectrum is dedicated to a 
central pixel as its feature, and it is used for classifications of pixels or  image 
segmentation. At first, local dimensions are determined on the whole image using 
Method 1. Box-counting method is used for calculation of global dimensions. Results of 
segmentation of collages of textures are illustrated in Figure 2 in case of two and four 
textures within the collage. As it is seen in Figure 2, the most erroneous segmentation 
results are zones containing the border of textures. The explanation of such pixel 
misclassification lies in the fact that MFS is calculated on the scaling neighborhoods and 
boundary pixels have neighborhoods consisted of pixels from different textural regions. 

 

 

a) b) 

c) d) 

Figure 2 Segmentation of collages of textural images: a) collage consisted of two 
textures, b) segmentation result for image from a), c) collage consisted of four textures, 

d) segmentation results for image from c). 
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4. Adaptive image denoising using local MF features  
 

 Image denoising techniques suffer from blurring edges within the image. This is 
a result of low-pass (LP) filters used for noise reduction. Additive noise is assumed to 
have high-frequency components while some components of the signal also occupy high 
ranges in frequency domain. Edges and textural regions are such signal components. The 
image is usually presumed as a union of homogeneous regions where the pixel intensity 
within each region has Gaussian distribution with particular mean value and standard 
deviation. Within this model, the edges are considered as borders between two 
homogeneous regions. The transition of pixel intensity on the borders reflects in high 
frequencies in the frequency domain. Textural regions, on the other hand, are seen as the 
regions with a high degree of edges. 

 

Adaptive filters proposed in [37], [38] are based on local dimensions or Hölder 
exponents. Local dimensions provide information on local behavior of a multifractal 
measure and pixels with the same local dimension values (iso-Hölder regions) indicate 
unidimensional regions. Depending on multifractal measure definition there are 
corresponding local dimension matrices with different features accented within image. 
Two multifractal measures are used as edge-detectors in literature [39] – MAX and MIN 
measure – that is the obtained local dimension matrices extract edges. Measures MAX 
and MIN analyze trend of behavior of each pixel in its neighborhoods where MAX 

a) b) 

c) d) 

Figure 3 Local dimension matrices are used as masks for adaptive filtering: a) original
image, b) gradient image, c) local dimension image obtained with MAX measure, d) local
dimension image obtained with MIN measure. 
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measure  calculates maximum pixel intensity and MIN measure calculates minimum 
pixel intensity in the various scales of the neighborhood. In other words, these two 
multifractal measures analyze maximum and minimum pixel intensities through different 
scales. Multifractal model suggests power-law dependence between measure and scale. In 
log-log plot it is reflected as a linear dependence. 

 

 
 

a) 

b) d) 

c) e) 

Figure 4 Adaptive image filtering using local dimension obtained with MAX measure: 
a) original image and filtered images obtained by: b) averaging, c) Gaussian filter; d)
adaptive filter with Gaussian filter. The size of filter window in all cases is 7 pixels. 
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Proposed adaptive denoising employs local dimension matrices obtained with 
MAX and MIN measures. Local dimension images (matrices) are in both cases analogue 
of the gradient image, where edges have high intensities and homogeneous regions are 
with low intensities. This is illustrated in Figure 3. In adaptive filtering scenario the local 
dimension matrices are used as masks for LP filters. In this way LP filter is favored in 
pixels with low local dimensions and LP filter is attenuated with pixels with high local 
dimensions, since high dimensions indicate edges. There are two LP filters employed in 
the analysis common in image denoising: averaging and Gaussian LP filter. Adaptive 
image denosing is shown in Figure 4 for both multifractal measures. 

From Figure 4 effect of denoising and edge preservation using adaptive 
approach is evident. Non-adaptive approaches (averaging and Gaussian filter) treat all 
pixels within the image in the same manner and, as a result, the edges (and textures) are 
blurred. This is not the case with adaptive filter realizations. Besides the qualitative tests, 
quantitative measurements are studied. Effective average gradient (EAG) [40] values 
confirm improvements retrieved by visual inspection. In all the test images (natural and 
aerial images) EAG values approve better edge preservation in adaptive than in non-
adaptive filtering. Further, EAG values favor adaptive filtering especially in the case of 
larger filtering windows. 

 
5. Conclusion 
 
 This paper briefly represented fractal techniques for image processing from the 
literature. Novel multifractal methods for image classification, segmentation and adaptive 
filtering are represented. Classification methods use multifractal spectra as a descriptor of 
the image for classification. Represented segmentation scenario engages multifractal 
spectrum as a descriptor of a pixel and reduces segmentation to classification of pixels. 
Proposed adaptive image filters employ local dimension matrix as a mask for labeling 
edge-like regions in the image. Pixels in the regions with the high content of edges are 
minimally affected by low-pass filter, while the pixels in the homogeneous regions are 
filtered stronger and the noise, assumed to be of a high frequency, is eliminated. As a 
result, edges and textures in the filtered image are preserved. 
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Sadržaj: Fraktalni pristup se uspešno koristi u mnogim primenama u okviru obrade 2D 
signala. Fraktalni sintetički koncept se primenjuje za kompresiju slika sa visokim 
stepenom kompresije dok fraktalni i multifraktalni deskriptori obezbeđuju klasifikaciju 
teksturalnih slika sa visokom tačnošću. U literaturi su dati razni multifraktalni modeli. 
Ovaj rad daje njihov pregled i donosi nove multifraktalne postupke koji su primenjeni za 
klasifikaciju slika i eliminaciju šuma u slikama. 
 
Ključne reči: Fraktalna dimenzija, multifraktalni spektar, klasifikacija slika, eliminacija 
šuma. 
 

KORIŠĆENJE MULTIFRAKTALNOG PRISTUPA  
ZA KLASIFIKACIJU SLIKA I ELIMINACIJU ŠUMA  
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